Sequence Listing was accepted.
If you need help call the Patent Electronic Business Center at (866)
217-9197 (toll free).
Reviewer: Durreshwar Anjum
Timestamp: [year=2009; month=3; day=10; hr=15; min=2; sec=27; ms=427;]

Validated By CRFValidator v 1.0.3

	Application N	o: 10554387	V	ersion No:	2.0
		Input Set:			
		Output Set:			
		Started:	2009-02-19 1		
		Finished:	2009-02-19 13		
		Elapsed:	0 hr(s) 0 mir	n(s) 0 sec(s) 982 ms
		Total Warnings: Total Errors:	11 0		
	No. o:	f SeqIDs Defined:	14		
		- tual SeqID Count:	14		
Err	or code	Error Description			
W	213	Artificial or Unk	nown found in	<213> in \$	SEQ ID (1)
W	213	Artificial or Unk	nown found in	<213> in \$	SEQ ID (2)
W	213	Artificial or Unk	nown found in	<213> in \$	SEQ ID (3)
W	213	Artificial or Unk	nown found in	<213> in \$	SEQ ID (4)
W	213	Artificial or Unk	nown found in	<213> in \$	SEQ ID (5)
W	213	Artificial or Unk	nown found in	<213> in \$	SEQ ID (6)
W	213	Artificial or Unk	nown found in	<213> in \$	SEQ ID (10)
W	213	Artificial or Unk	nown found in	<213> in \$	SEQ ID (11)
W	213	Artificial or Unk	nown found in	<213> in \$	SEQ ID (12)
W	213	Artificial or Unk	nown found in	<213> in \$	SEQ ID (13)
W	213	Artificial or Unk	nown found in	<213> in \$	SEQ ID (14)

<110> Protalix Ltd. Shaaltiel, Yoseph Baum, Gideon Hashmueli, Sharon Lewkowicz, Ayala Bartfeld, Daniel <120> PRODUCTION OF HIGH MANNOSE PROTEINS IN PLANT CULTURE <130> 30570 <140> 10554387 <141> 2005-10-25 <150> IL 155588 <151> 2003-04-27 <150> PCT/IL2004/000181 <151> 2004-02-24 <160> 14 <170> PatentIn version 3.5 <210> 1 <211> 22 <212> PRT <213> Artificial sequence <220> <223> ER signal peptide <400> 1 Met Lys Thr Asn Leu Phe Leu Phe Leu Ile Phe Ser Leu Leu Leu Ser 1 5 10 15 Leu Ser Ser Ala Glu Phe 20 <210> 2 <211> 7 <212> PRT <213> Artificial sequence <220> <223> Vacuolar targeting signal from Tobacco chitinase A <400> 2 Asp Leu Leu Val Asp Thr Met 1 5

<210>	
<211>	21
<212>	DNA
<213>	Artificial sequence
<220>	
<223>	Single strand DNA oligonucleotide
(10.0)	
<400>	
cagaat	tege eegeceetge a
<210>	4
<210>	
<212>	
<213>	Artificial sequence
<220>	
	Single strand DNA oligonucleotide
<400>	4
ctcaga	tctt ggcgatgcca ca
<210>	5
<211>	19
<212>	
<213>	Artificial sequence
<220>	
	Single strand DNA oligonucleotide
~223/	Single strand DMA origonacteotide
<400>	5
ctcaga	agac cagagggct
<210>	
<211>	
<212>	17 DNA
	17
<212> <213>	17 DNA
<212> <213> <220>	17 DNA Artificial sequence
<212> <213> <220>	17 DNA Artificial sequence
<212>	17 DNA Artificial sequence Single strand DNA oligonucleotide
<212> <213> <220> <223> <400>	17 DNA Artificial sequence Single strand DNA oligonucleotide 6
<212> <213> <220> <223> <400>	17 DNA Artificial sequence Single strand DNA oligonucleotide
<212> <213> <220> <223> <400>	17 DNA Artificial sequence Single strand DNA oligonucleotide 6
<212> <213> <220> <223> <400> caaagc	17 DNA Artificial sequence Single strand DNA oligonucleotide 6 ggcc atcgtgc
<212> <213> <220> <223> <400> caaagc <210>	17 DNA Artificial sequence Single strand DNA oligonucleotide 6 ggcc atcgtgc 7
<212> <213> <220> <223> <400> caaagc <210> <211>	17 DNA Artificial sequence Single strand DNA oligonucleotide 6 ggcc atcgtgc 7 1491
<212> <213> <220> <223> <400> caaagc <210> <211> <212>	17 DNA Artificial sequence Single strand DNA oligonucleotide 6 ggcc atcgtgc 7 1491
<212> <213> <220> <223> <400> caaagc <210> <211> <212>	17 DNA Artificial sequence Single strand DNA oligonucleotide 6 ggcc atcgtgc 7 1491 DNA Homo sapiens

acatactgtg acteetttga ecceedgace ttteetgeee ttggtaeett eageegetat 120 180 gagagtacac gcagtgggcg acggatggag ctgagtatgg ggcccatcca ggctaatcac 240 acgggcacag geetgetaet gaeeetgeag eeagaacaga agtteeagaa agtgaaggga 300 tttggagggg ccatgacaga tgctgctgct ctcaacatcc ttgccctgtc acccctgcc caaaatttgc tacttaaatc gtacttctct gaagaaggaa tcggatataa catcatccgg 360 gtacccatgg ccagctgtga cttctccatc cgcacctaca cctatgcaga cacccctgat 420 480 gatttccagt tgcacaactt cagectecca gaggaagata ccaageteaa gataeceetg 540 attcaccgag ccctgcagtt ggcccagcgt cccgtttcac tccttgccag cccctggaca 600 tcacccactt ggctcaagac caatggagcg gtgaatggga agggggtcact caagggacag cccggagaca tctaccacca gacctgggcc agatactttg tgaagttcct ggatgcctat 660 gctgagcaca agttacagtt ctgggcagtg acagctgaaa atgagccttc tgctgggctg 720 780 ttgagtggat accectteea gtgeetggge tteaceeetg aaeateageg agaetteatt gcccgtgacc taggtcctac cctcgccaac agtactcacc acaatgtccg cctactcatg 840 ctggatgacc aacgcttgct gctgccccac tgggcaaagg tggtactgac agacccagaa 900 gcagctaaat atgttcatgg cattgctgta cattggtacc tggactttct ggctccagcc 960 1020 aaagccaccc taggggagac acaccgcctg ttccccaaca ccatgctctt tgcctcagag 1080 gcctgtgtgg gctccaagtt ctgggagcag agtgtgcggc taggctcctg ggatcgaggg atgcagtaca gccacagcat catcacgaac ctcctgtacc atgtggtcgg ctggaccgac 1140 tggaaccttg ccctgaaccc cgaaggagga cccaattggg tgcgtaactt tgtcgacagt 1200 1260 cccatcattg tagacatcac caaggacacg ttttacaaac agcccatgtt ctaccacctt ggccacttca gcaagttcat tcctgagggc tcccagagag tggggctggt tgccagtcag 1320 1380 aagaacgacc tggacgcagt ggcactgatg catcccgatg gctctgctgt tgtggtcgtg ctaaaccgct cctctaagga tgtgcctctt accatcaagg atcctgctgt gggcttcctg 1440 1491 gagacaatet cacetggeta etceatteae acetaeetgt ggeategeea g

<210> 8 <211> 496 <212> PRT <213> Homo sapiens

<400> 8

Ala Arg Pro Cys Ile Pro Lys Ser Phe Gly Tyr Ser Ser Val Val Cys

1	5	10	15
Val Cys Asn Ala		Ser Phe Asp Pro Pro	Thr Phe Pro
20		25	30
Ala Leu Gly Thr	Phe Ser Arg Tyr	Glu Ser Thr Arg Ser	Gly Arg Arg
35	40	45	
Met Glu Leu Ser 50	Met Gly Pro Ile 55	Gln Ala Asn His Thr 60	Gly Thr Gly
Leu Leu Leu Thr	Leu Gln Pro Glu	Gln Lys Phe Gln Lys	Val Lys Gly
65	70	75	80
Phe Gly Gly Ala	Met Thr Asp Ala .	Ala Ala Leu Asn Ile	Leu Ala Leu
	85	90	95
Ser Pro Pro Ala		Leu Lys Ser Tyr Phe	Ser Glu Glu
100		105	110
Gly Ile Gly Tyr	Asn Ile Ile Arg ⁷	Val Pro Met Ala Ser	Cys Asp Phe
115	120	125	
Ser Ile Arg Thr	Tyr Thr Tyr Ala .	Asp Thr Pro Asp Asp	Phe Gln Leu
130	135	140	
His Asn Phe Ser	Leu Pro Glu Glu .	Asp Thr Lys Leu Lys	Ile Pro Leu
145	150	155	160
Ile His Arg Ala	Leu Gln Leu Ala	Gln Arg Pro Val Ser	Leu Leu Ala
	165	170	175
Ser Pro Trp Thr	-	Leu Lys Thr Asn Gly	Ala Val Asn
180		185	190
Gly Lys Gly Ser 195	Leu Lys Gly Gln 200	Pro Gly Asp Ile Tyr 205	His Gln Thr
Trp Ala Arg Tyr	Phe Val Lys Phe 2	Leu Asp Ala Tyr Ala	Glu His Lys
210	215	220	
Leu Gln Phe Trp	Ala Val Thr Ala	Glu Asn Glu Pro Ser	Ala Gly Leu

Leu Gln Phe Trp Ala Val Thr Ala Glu Asn Glu Pro Ser Ala Gly Leu225230235240

Leu Ser Gly	Tyr Pro 1 245	Phe Gln	Cys Leu	Gly Phe 250	Thr Pro	Glu His 255	
Arg Asp Phe	Ile Ala 2 260	Arg Asp	Leu Gly 265	Pro Thr	Leu Ala	Asn Ser 270	Thr
His His Asn 275	Val Arg 3	Leu Leu	Met Leu 280	Asp Asp	Gly Arg 285	Leu Leu	Leu
His Trp Ala 290	Lys Val '	Val Leu 295	Thr Asp	Pro Glu	Ala Ala 300	Lys Tyr	Val
His Gly Ile 305		His Trp 310	Tyr Leu	Asp Phe 315	Leu Ala	Pro Ala	Lys 320
Ala Thr Leu	325		-	330		335	
Ala Ser Glu	340		345			350	
Leu Gly Ser 355			360		365		
Asn Leu Leu 370	-	375		-	380		
Asn Pro Glu 385		390	-	395		-	400
Ile Ile Val	405			410		415	
Tyr His Leu	420		425		_	430	-
Val Gly Leu 435			440		445		
Met His Pro 450	чар сту :	Ser Ala 455	vai val	var val	Leu Asn 460	AIG Ser	ser

Lys Asp Val Pro Leu Thr Ile Lys Asp Pro Ala Val Gly Phe Leu 465 470 475	Glu 480
Thr Ile Ser Pro Gly Tyr Ser Ile His Thr Tyr Leu Trp His Arg 485 490 495	Gln
<210> 9 <211> 338 <212> DNA <213> Cauliflower mosaic virus	
<400> 9 ttttcacaaa gggtaatatc gggaaacctc ctcggattcc attgcccagc tatct	gtcac 60
	-
ttcatcgaaa ggacagtaga aaaggaaggt ggctcctaca aatgccatca ttgcg	ataaa 120
ggaaaggcta tcgttcaaga tgcctctacc gacagtggtc ccaaagatgg acccc	caccc 180
acgaggaaca tcgtggaaaa agaagacgtt ccaaccacgt cttcaaagca agtgg	attga 240
tgtgatatct ccactgacgt aagggatgac gcacaatccc actatccttc gcaag	accct 300
tcctctatat aaggaagttc atttcatttg gagaggac	338
<210> 10 <211> 66 <212> DNA <213> Artificial sequence <220> <223> Nucleic acid sequence encoding the ER signal peptide	
<400> 10 atgaagacta atctttttct ctttctcatc ttttcacttc tcctatcatt atcct	cggcc 60
gaatte	66
<210> 11 <211> 21 <212> DNA <213> Artificial sequence	
<220> <223> Nucleic acid sequence encoding the vacuolar targeting	sequence
<400> 11	
gatcttttag tcgatactat g	21
<210> 12 <211> 167	

<212> DNA

<213> Artificial sequence

<220> <223> Nucleic acid sequence of the Agrobacterium tumefaciens terminator

<220> <221> misc_feature <222> (162)..(162) <223> n is a, c, g, or t

<400> 12 taatttcatg atctgttttg ttgtattccc ttgcaatgca gggcctaggg ctatgaataa 60 agttaatgtg tgaatgtgtg aatgtgtgat tgtgacctga agggatcacg actataatcg 120 167

tttataataa acaaagactt tgtcccaaaa acccccccc cngcaga

<210> 13 <211> 2186 <212> DNA <213> Artificial sequence

<220> <223> nucleic acid sequence encoding high mannose human glucocerebrosidase (GCD)

<220>

<221> misc_feature <222> (2181)..(2181) <223> n is a, c, g, or t

```
<400> 13
                                                                        60
ttttcacaaa gggtaatatc gggaaacctc ctcggattcc attgcccagc tatctgtcac
ttcatcgaaa ggacagtaga aaaggaaggt ggctcctaca aatgccatca ttgcgataaa
                                                                       120
ggaaaggcta tcgttcaaga tgcctctacc gacagtggtc ccaaagatgg acccccaccc
                                                                       180
acgaggaaca tcgtggaaaa agaagacgtt ccaaccacgt cttcaaagca agtggattga
                                                                       240
                                                                       300
tgtgatatet ceactgacgt aagggatgac geacaateee actateette geaagaeeet
teetetatat aaggaagtte attteatttg gagaggaeag gettettgag ateetteaae
                                                                       360
aattaccaac aacaacaaac aacaaacaac attacaatta ctatttacaa ttacagtcga
                                                                       420
gggatccaag gagatataac aatgaagact aatctttttc tctttctcat cttttcactt
                                                                       480
                                                                       540
ctcctatcat tatcctcggc cgaattcgcc cgcccctgca tccctaaaag cttcggctac
ageteggtgg tgtgtgtetg caatgeeaca taetgtgaet eetttgaeee eeegaeettt
                                                                        600
                                                                       660
cctgcccttg gtaccttcag ccgctatgag agtacacgca gtgggcgacg gatggagctg
```

agtatggggc ccatccaggc taatcacacg ggcacaggcc tgctactgac cctgcagcca 720 780 gaacagaagt tccagaaagt gaagggattt ggaggggcca tgacagatgc tgctgctctc aacateettg eeetgteace eeetgeeeaa aatttgetae ttaaategta ettetetgaa 840 gaaggaatcg gatataacat catccgggta cccatggcca gctgtgactt ctccatccgc 900 acctacacct atgcagacac ccctgatgat ttccagttgc acaacttcag cctcccagag 960 gaagatacca ageteaagat acceetgatt caeegageee tgeagttgge eeagegteee 1020 1080 gtttcactcc ttgccagccc ctggacatca cccacttggc tcaagaccaa tggagcggtg 1140 aatgggaagg ggtcactcaa gggacagccc ggagacatct accaccagac ctgggccaga tactttgtga agttcctgga tgcctatgct gagcacaagt tacagttctg ggcagtgaca 1200 getgaaaatg ageettetge tgggetgttg agtggataee eetteeagtg eetgggette 1260 accectgaac atcagegaga etteattgee egtgaeetag gteetaeeet egecaacagt 1320 1380 actcaccaca atgtccgcct actcatgctg gatgaccaac gcttgctgct gccccactgg gcaaaggtgg tactgacaga cccagaagca gctaaatatg ttcatggcat tgctgtacat 1440 tggtacctgg actttctggc tccagccaaa gccaccctag gggagacaca ccgcctgttc 1500 cccaacacca tgctctttgc ctcagaggcc tgtgtgggct ccaagttctg ggagcagagt 1560 1620 gtgeggetag geteetggga tegagggatg eagtacagee acageateat eaegaaeete 1680 ctgtaccatg tggtcggctg gaccgactgg aaccttgccc tgaaccccga aggaggaccc 1740 aattgggtgc gtaactttgt cgacagtccc atcattgtag acatcaccaa ggacacgttt tacaaacage ceatgtteta ceaeettgge caetteagea agtteattee tgagggetee 1800 cagagagtgg ggctggttgc cagtcagaag aacgacctgg acgcagtggc actgatgcat 1860 cccgatgget etgetgttgt ggtegtgeta aacegeteet etaaggatgt geetettace 1920 1980 atcaaggatc ctgctgtggg cttcctggag acaatctcac ctggctactc cattcacacc tacctgtggc atcgccaaga tcttttagtc gatactatgt aatttcatga tctgttttgt 2040 2100 tgtattccct tgcaatgcag ggcctagggc tatgaataaa gttaatgtgt gaatgtgtga atgtgtgatt gtgacctgaa gggatcacga ctataatcgt ttataataaa caaagacttt 2160 2186 gtcccaaaaa ccccccccc ngcaga

<210> 14 <211> 526 <212> PRT <213> Artificial sequence <220> <223> High mannose human glucocerebrosidase (GCD) <400> 14 Met Lys Thr Asn Leu Phe Leu Phe Leu Ile Phe Ser Leu Leu Leu Ser 1 5 10 15 Leu Ser Ser Ala Glu Phe Ala Arg Pro Cys Ile Pro Lys Ser Phe Gly 20 25 30 Tyr Ser Ser Val Val Cys Val Cys Asn Ala Thr Tyr Cys Asp Ser Phe 35 40 45 Asp Pro Pro Thr Phe Pro Ala Leu Gly Thr Phe Ser Arg Tyr Glu Ser 55 60 50 Thr Arg Ser Gly Arg Arg Met Glu Leu Ser Met Gly Pro Ile Gln Ala 70 75 65 80 Asn His Thr Gly Thr Gly Leu Leu Thr Leu Gln Pro Glu Gln Lys 95 85 90 Phe Gln Lys Val Lys Gly Phe Gly Gly Ala Met Thr Asp Ala Ala Ala 105 100 110 Leu Asn Ile Leu Ala Leu Ser Pro Pro Ala Gln Asn Leu Leu Lys 115 120 125 Ser Tyr Phe Ser Glu Glu Gly Ile Gly Tyr Asn Ile Ile Arg Val Pro 130 135 140 Met Ala Ser Cys Asp Phe Ser Ile Arg Thr Tyr Thr Tyr Ala Asp Thr 145 150 155 160 Pro Asp Asp Phe Gln Leu His Asn Phe Ser Leu Pro Glu Glu Asp Thr 175 170 165 Lys Leu Lys Ile Pro Leu Ile His Arq Ala Leu Gln Leu Ala Gln Arq 180 185 190 Pro Val Ser Leu Leu Ala Ser Pro Trp Thr Ser Pro Thr Trp Leu Lys 195 200 205

Thr	Asn 210	Gly	Ala	Val	Asn	Gly 215	Lys	Gly	Ser	Leu	Lys 220	Gly	Gln	Pro	Gly
Asp 225	Ile	Tyr	His	Gln	Thr 230	Trp	Ala	Arg	Tyr	Phe 235	Val	Lys	Phe	Leu	Asp 240
Ala	Tyr	Ala	Glu	His 245	Lys	Leu	Gln	Phe	Trp 250	Ala	Val	Thr	Ala	Glu 255	Asn
Glu	Pro	Ser	Ala 260	Gly	Leu	Leu	Ser	Gly 265	Tyr	Pro	Phe	Gln	Cys 270	Leu	Gly
Phe	Thr	Pro 275	Glu	His	Gln	Arg	Asp 280	Phe	Ile	Ala	Arg	Asp 285	Leu	Gly	Pro
Thr	Leu 290	Ala	Asn	Ser	Thr	His 295	His	Asn	Val	Arg	Leu 300	Leu	Met	Leu	Asp
Asp 305	Gln	Arg	Leu	Leu	Leu 310	Pro	His	Trp	Ala	Lys 315	Val	Val	Leu	Thr	Asp 320
Pro	Glu	Ala	Ala	Lys 325	Tyr	Val	His	Gly	Ile 330	Ala	Val	His	Trp	Tyr 335	Leu
Asp	Phe	Leu	Ala 340	Pro	Ala	Lys	Ala	Thr 345	Leu	Gly	Glu	Thr	His 350	Arg	Leu
Phe	Pro	Asn 355	Thr	Met	Leu	Phe	Ala 360	Ser	Glu	Ala	Суз	Val 365	Gly	Ser	Lys
Phe	Trp 370	Glu	Gln	Ser	Val	Arg 375	Leu	Gly	Ser	Trp	Asp 380	Arg	Gly	Met	Gln
Tyr 385	Ser	His	Ser	Ile	Ile 390	Thr	Asn	Leu	Leu	Tyr 395	His	Val	Val	Gly	Trp 400
Thr	Asp	Trp	Asn	Leu 405	Ala	Leu	Asn	Pro	Glu 410	Gly	Gly	Pro	Asn	Trp 415	Val
Arg	Asn	Phe	Val 420	Asp	Ser	Pro	Ile	Ile 425	Val	Asp	Ile	Thr	Lys 430	Asp	Thr

Phe Tyr Lys 435	Gln Pro Met	Phe Tyr His 440	Leu Gly His	Phe Ser Lys P 445	'he
Ile Pro Glu 450	Gly Ser Glr	Arg Val Gly 455	Leu Val Ala 460	Ser Gln Lys A	4sn
Asp Leu Asp 465	Ala Val Ala 470		Pro Asp Gly 475	Ser Ala Val V 4	7al 180
Val Val Leu	Asn Arg Ser 485	Ser Lys Asp	Val Pro Leu 490	Thr Ile Lys A 495	7ab
Pro Ala Val	Gly Phe Leu 500	Glu Thr Ile 505	Ser Pro Gly	Tyr Ser Ile H 510	lis
Thr Tyr Leu 515	Trp His Arg	Gln Asp Leu 520	Leu Val Asp	Thr Met 525	